

 Report on the 2023 edition
 https://chc-comp.github.io/

Emanuele De Angelis, IASI-CNR, Italy

Hari Govind V K, Univ. of Waterloo, Canada

HCVS, 23 April 2023, Paris, France

https://chc-comp.github.io/

Outline

● Tracks
● Benchmarks
● Teams & Solvers
● Results
● Discussion

Tracks

Tracks
● Linear Integer Arithmetic, Linear clauses (LIA-Lin)

● LIA, Nonlinear clauses (LIA-Nonlin)

● LIA and Arrays, Linear clauses (LIA-Lin-Array)

● LIA and Arrays, Nonlinear clauses (LIA-Nonlin-Array)

● Linear Real Arithmetic, Transition Systems (LRA-TS)

● LRA-TS-parallel, Transition Systems (LRA-TS-par)

● Algebraic Data-Types, Nonlinear clauses (ADT-Nonlin)

● LIA, Arrays and non-recursive ADT, Nonlinear clauses (LIA-Nonlin-Arrays-nonrecADT)

● ADT and LIA, Nonlinear clauses (ADT-LIA-nonlin) New in 2023

Benchmarks
Inventory, Processing & Selection process

New Benchmarks on Algebraic Data Types + LIA

● ADTRem (Thanks to Fabio Fioravanti)
Source: ADTRem tool benchmark set; taken from CLAM, HipSpec, IsaPlanner, and Leon
https://github.com/chc-comp/ADTRem/

● TIP-ADT-LIA (Thanks to Yurii Kostyukov)
Source: "Tons of Inductive Problems" (https://github.com/tip-org/benchmarks)
https://github.com/ndreuu/TIP-no-NAT/releases/tag/chc-comp-23

● Rust-horn
Source: RustHorn tool benchmark set
https://github.com/hopv/rust-horn/tree/master/toplas2021/benchmarks/rust-horn

github https://github.com/chc-comp
StarExec https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=73700

Repositories

https://github.com/chc-comp/ADTRem
https://github.com/tip-org/benchmarks
https://github.com/ndreuu/TIP-no-NAT/releases/tag/chc-comp-23
https://github.com/hopv/rust-horn/tree/master/toplas2021/benchmarks/rust-horn
https://github.com/chc-comp
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=73700

Benchmark processing
1. Formatted according to CHC-COMP format (https://chc-comp.github.io/format.html)

using format.py (https://github.com/chc-comp/chc-tools)

2. Categorized by background theory according to the CHC-COMP tracks
using check[-TRACK] (https://github.com/chc-comp/chc-tools)

3. Removed duplicated benchmarks
Step 1 & Step 2:
New formatter & checker
supporting ADTs!

https://chc-comp.github.io/format.html
https://github.com/chc-comp/chc-tools
https://github.com/chc-comp/chc-tools

Benchmarks
inventory
(total/unique
 #benchmarks)

Benchmark selection
The "hardness" of the benchmarks is determined by
using the results of the two top solvers from 2022:

A - rated benchmarks: both solvers can solve it
B - rated benchmarks: one solver can solve it
C - rated benchmarks: both solvers timed out

Time out 30s, for both solvers

Selection process applied to tracks (without ADTs)
where we have too many benchmarks: LIA-{lin,nonlin} LIA-nonlin-Arrays

Spacer Spacer

Golem

1. Run the two top solvers to get the ratings A, B, and C. This yields four sets:
A-rated benchmarks
B-rated benchmarks solved by Spacer only
B-rated benchmarks solved by Golem | Eldarica only
C-rated benchmarks

2. For each repo, we choose a number Nr of benchmarks to randomly select:
● up to 0.2xNr A-rated benchmarks
● up to 0.4xNr B-rated benchmarks equally distributed between Spacer & Golem | Eldarica
● up to 0.4xNr C-rated benchmarks

If any repo contains fewer benchmarks than required,
take the rest from the next higher rating class.

Benchmark selection (Cont'd)

Benchmark selection
(tracks wit ADTs)
The "hardness" of the benchmarks with Algebraic Data Types
is determined by using the results of the top solver only (*)

B - rated benchmarks: Spacer can solve it
C - rated benchmarks: Spacer timed out (30s)

(*) Due to limited number of CHC-COMP 2022 solvers that are able to reason on
ADTs/have restrictions on the SMT-LIB syntax for ADTs.

For each repo w/ADTs, we choose a number Nr of benchmarks to randomly select
● up to 0.4xNr B-rated benchmarks
● up to 0.6xNr C-rated benchmarks

Spacer

Hardness
statistics

Competition
benchmarks
(to be selected/selected)

Solvers (6 competing + 1 hors concours)
LIA-lin LIA-nonlin LIA-lin-

Arrays
LIA-nonlin-

Arrays
LIA-nonlin-

Arrays-
nonrecADT

ADT-LIA-
nonlin

Eldarica Yes Yes Yes Yes Yes Yes

Golem Yes Yes No No No No

LoAT Yes No No No No No

Theta Yes Yes Yes Yes No No

Ultimate TreeAutomizer Yes Yes Yes Yes No No

Ultimate Unihorn Yes Yes Yes Yes No No

Spacer (Hors Concours) Yes Yes Yes Yes Yes Yes

Competition Runs
Resources

● Timeout: 1800s (CPU time, wall-clock time)

● Memory limit: 64GB

● Two jobs per StarExec node, two cores for each job
NEW nodes! Specs: Intel(R) Xeon(R) Gold 6334 CPU @ 3.60GHz

Competition results

LIA-
lin

LIA-
nonlin

LIA-
lin-
Arrays

LIA-
nonlin-
Arrays

LIA-nonlin-Arrays-nonrecADT

ADT-LIA-nonlin

Results
LIA-lin LIA-nonlin LIA-lin-

Arrays
LIA-nonlin-

Arrays
LIA-nonlin-

Arrays-
nonrecADT

ADT-LIA-
nonlin

1st Golem Eldarica Eldarica Eldarica Eldarica Eldarica

2nd Eldarica Golem Theta Ultimate
Unihorn

3rd Theta Ultimate
Unihorn

Ultimate
Unihorn Theta

+ Spacer for many unofficial 1st places

Big Thanks to

Discussion
● Result validation

○ rules to handle cases when solvers disagree on result
○ models/counterexamples

● Benchmarks
○ new benchmark set for LIA-{lin, nonlin}, LIA-{lin, nonlin}-Arrays
○ set-info :status

● Tracks
○ Tracks w/ADT, new solvers are welcome!
○ Parallel tracks for portfolio solvers
○ Adding a more general LRA track

● Organizers of the next edition

